Subject and Year Group	Aułumn 1 Year 13	Autumn 2 Year 13	Spring 1 Year 13	Spring 2 Year 13	Summer 1 Year 13
Topic/Unit to be studied	- Functions and Graphs - Radians - Proof - Algebraic fractions - Partial Fractions - Binomial expansion - Forces and Friction	- Trigonometric Functions - Trigonometry and modelling - Differentiations - Integration	- Parametric equations - Numerical methods - Sequences and series - Vectors - Moments - Projectiles - Applications of Forces	- Regression, Correlations and Hypothesis testing - Conditional Probability - Differentiation Part 2 - Integration Part 2	- The Normal distribution - Further Kinematics
Core Knowledge and skills	- Modulus - Mappings - Composite and inverse functions - $y=\|f(x)\|$ and $y=f(\|x\|)$ - Combining transformations - Solving modulus problems - Radian measure - Arc length - Area of segments and sectors - Solving trigonometric equations with radians - Small angle approximation - Recap proof by contradiction - Algebraic and partial fractions - Algebraic division - Resolving Forces - Inclined Planes - Friction	- Secant, cosecant and cotangent and their graphs. - Trigonometric identities with sec, cosec and cot - Inverse trigonometric functions - Addition formulae - Double angle formulae - Simplifying acosx + $b \sin x$ - Proving trigonometric identities - Differentiating: - $\operatorname{Sin} x, \operatorname{Cos} x$, Exponentials, and Logs; The chain, product and quotient rules. - Integrating: - Standard functions, $\mathrm{f}(\mathrm{ax}+\mathrm{b})$ - Reverse chain rule - By substitution - By parts - With partial fractions - Finding area.	- Parametric equations - Curve sketching - Points of intersections - Locating roots - Iteration - The Newton-Raphson method - Arithmetic and geometric sequences and series - Sum to infinity - Sigma notation - Recurrence relations - Vectors in 3D - Moments, Equilibrium, Centres of mass, Tilting, Horizontal and vertical components - Projection at any angle - Projectile motion formulae - Modelling with static particles - Friction on static particles - Static rigid bodies - Dynamics and inclined planes - Connected particles	- Exponential models - Measuring correlation - Hypothesis testing for zero correlation - Set notation - Conditional probability with venn diagrams - Probability formula - Tree diagrams - Parametric and - Implicit differentiation - Using second derivatives - Rates of change - The Trapezium Rule - Solving differential equations	- The normal distribution - Finding probabilities - Inverse normal distribution - Standard normal distribution - Finding μ and σ - Approximating a binomial distribution - Hypothesis testing with a normal distribution - Vectors in kinematics - Vector methods with projectiles - Variable acceleration in one dimension - Differentiating vectors - Integrating vectors
Assessment for and of learning	Unit assessments	Unit assessments	Unit assessments Mock exam	Unit assessments	Unit assessments

