Year 12 AS/A level Further Maths Baseline Test

Instructions

- The time for the test is 1 hour.
- Answer all questions.

Information

- The total mark for this paper is 48.
- The marks for each question are shown in brackets
 -use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Keep an eye on the time.
- Try to answer every question.
- Check your answers if you have time at the end.

- 1 Simplify these expressions as far as possible.
 - a $\frac{x^2 2x 3}{x^2 + 2x + 1}$ (3 marks)
 - **b** $\frac{x^2 25}{x^2 + 6x + 8} \div \frac{x^2 2x 15}{x^2 16}$ (4 marks)
- 2 The line *l* is a tangent to the circle $x^2 + y^2 = 20$ at the point P(2, 4).

The tangent intersects the y-axis at point A. Find the area of the triangle OPA. (5 marks)

- 3 Expand and simplify $(\sqrt{p} + 2\sqrt{q})(2\sqrt{p} \sqrt{q})$ (3 marks)
- **4** a Write $3x^2 12x + 7$ in the form $a(x+b)^2 + c$ (3 marks)
 - **b** Hence, or otherwise, write down the coordinates of the turning point of the graph of $y = 3x^2 12x + 7$ (1 mark)
- 5 Prove algebraically that the product of three consecutive odd numbers is always an odd number.(4 marks)
- 6 The functions g and f are defined as $g(x) = \frac{2x}{4-x}$ and f(x) = 3x-1

Given that $x \neq 4$, find the value(s) of x such that g(x) = f(x), giving your answer(s) to 2 decimal places. (6 marks)

- 7 The line l_1 has equation $y = -\frac{1}{2}x + 3$ and intersects the x- and y-axes at the points A and B respectively.
 - **a** Find the exact length of the line segment AB. (3 marks)
 - **b** Find the equation of the line l_2 perpendicular to l_1 which passes through the point P(-1, -2). (2 marks)

The line l_2 intersects l_1 at the point C.

 \mathbf{c} Find the midpoint of the line segment AC. (4 marks)

- 8 A triangle ABC has side lengths AB = 10 cm, BC = 15 cm and AC = 8 cm.
 - a Find the size of the largest angle, giving your anwer to 2 decimal places. (3 marks)
 - **b** Find the area of the triangle, giving your anwer to 2 decimal places. (2 marks)
- 9 a Sketch the graph of $y = \cos x$ for $-180 \le x \le 360^\circ$, showing the points where the graph cuts the axes. (2 r

(2 marks)

b Hence find the exact values of x in the interval $-180 \le x \le 360^\circ$ for which

$$\cos x = -\frac{\sqrt{3}}{2} \tag{3 marks}$$

This is the end of the test.