A-Level Chemistry

Introduction

Booklet.

Welcome to A-Level Chemistry, you are now on the true path of knowledge.
In order that we can help you to help yourself on this course we have produced this booklet, it will give you a basic start in some of the fundamental ideas of the first few units that are taught in your first year in Chemistry. Some of it will be brand new and some you will remember from GCSE, it's not meant to be a boring task book but reading through the notes and completing the exercises will help you avoid the pitfalls that get A-level chemists at the start of the course. GOOD LUCK and happy Chemisting!

Contents

PAGE	TITLE
2	Periodic Table
3	Atomic Structure and Mass Spec
7	Electronic structure
8	Amount of substance
10	Bonding
11	Shapes of Molecules
13	Periodicity
16	

The Periodic Table of the Elements

	$\underset{\sim}{\infty}$
守 O喜	

Atomic Structure and Mass Spectrometry

The atom consists of two parts:

In a neutral atom, the number of protons and electrons are the same.

The basic properties can be summarised as follows:

Particle	Charge	Mass
Proton	+1 unit	Approx 1 unit
Neutron	No charge	Approx 1 unit
Electron	-1 unit	Approx 1/1840 units (very small)

Mass Spec -- stages

1. Ionisation

Creates positive ion
2. Acceleration

Negatively charged plate attracts ions.
Hole puts ions into a stream.
3. Detection

Electrons attracted to positive ions. TOF - time of flight - used to work out mass.

The mass spectrometer is an instrument used for measuring the masses of atoms and molecules. It can also be used to measure the relative abundance of different isotopes and to predict the structure of more complex molecules.

The degree of deflection depends on the mass and the charge; the greater the mass, the less the deflection, and the greater the charge, the greater the deflection. It can be shown that the deflection is inversely proportional to the m / e ratio.
The greater the number of particles landing at a single point on the detector, the greater the electric current and the larger the peak. Thus the relative abundance of different isotopes can be measured. Since the position at which an ion appears on the detector depends on its mass, different isotopes appear at different points on the detector. The magnitude of the peak gives the relative abundance of the isotope.

Thus the relative atomic mass of the element can be calculated from its mass spectrum.
An example of a simple mass spectrum is shown below.
Mass spectrum of Ne

$100 — \mid$	The relative atomic mass can be calculated by the formula: $\Sigma=(\%$ abundance of each isotope x mass of each isotope $)$ 100

relative abundance

The peak at 20 is ${ }^{22} \mathrm{Ne}^{+}$, and the peak at 22 is ${ }^{22} \mathrm{Ne}$

Question

Prepare to fire the Mass Spectrometer!

Make the target Tokyo!!!!

How many isotopes doesthis element have?
What elementis it?
Look at the relative abundances of the isotopes

Calculate the RAM

Σ (percentage abundance of each isotope x mass of each isotope)
100

Step 1: Find the total mass of these 100 typical atoms:
$(51.5 \times 90)+(11.2 \times 91)+(17.1 \times 92)+(17.4 \times 94)+(2.8 \times 96)=9131.8$

Step 2: find the average mass of these 100 atoms:
$9131.8 / 100=91.3$ (to 3 sig fig).
91.3 is the relative atomic mass of zirconium.

Remember this!!!
IF ITS NOT GIVEN AS A PERCENTAGE SIMPLY DIMDE BYTHE SUM OF THE RELATIVE ABUNDANCES INSTEAD!

Write down definitions for the following three important terms

Atomic number

Mass Number

Relative Atomic Mass

Using what you should already know about the atom draw and label an atom in the space below that contains 2 protons, 2 neutrons and 2 electrons

COMPLETE THE TABLE BELOW

	PROTONS	NEUTRONS	ELECTRONS	ATOMIC NO.	MASS NO.	SYMBOL
A	7				14	
B		16		15		
C			10	8	16	
D	35		36		79	
E		30				
F						Al

You do realise that this is the easy part. So, why not sit back listen to some smooth jazz with a cup of espresso and contemplate how good life is for now!!!

Calculate the Relative Atomic Mass of Neon from the following spectra.

The percentage makeup of naturally occurring potassium is $93.11 \%{ }^{39} \mathrm{~K}, 0.12 \%{ }^{40} \mathrm{~K}$ and $6.77 \%{ }^{41} \mathrm{~K}$
Calculate the relative atomic mass of potassium
\square

NOTES/QUESTIONS

Make a note of anything you need to ask here such as "Why am I doing this to myself?" or "Somebody help me"

Electronic Structure

At this point you will now realise that some of GCSE chemistry is not actually true. We have not lied to you, you just couldn't handle the truth until now.
In an atom, electrons fly around the nucleus in shells or energy levels, the further from the nucleus the higher the quantum number of the shell and the higher the energy. However each shell is divided in to sub shells S, P , D in each sub shell there are a certain number of orbitals in which electron pairs spin in opposite directions (electron arrangement at Gcse doesn't seem that bad now does it)

This table shows the no. of electron that fit in each shell

Shell	Sub Shell	Total no. of electrons
1	1 s	2
2	$2 \mathrm{~s} \mathrm{2p}$	$2+(3 \times 2)=8$
3	$3 \mathrm{~s} \mathrm{3p} \mathrm{3d}$	$2+(3 \times 2)+(5 \times 2)=18$
4	$4 \mathrm{~s} \mathrm{4p} \mathrm{4d} \mathrm{4f}$	$2+(3 \times 2)+(5 \times 2)+(7 \times 2)=32$

This table shows the subshells and electrons in the first 4 energy levels
The order of filling orbitals is in order of energy.

$$
1 \mathrm{~s} \longrightarrow 2 \mathrm{~s} \longrightarrow 2 \mathrm{p} \longrightarrow 3 \mathrm{~s} \longrightarrow 4 \mathrm{p} \longrightarrow 4 \mathrm{~s} \longrightarrow 3 \mathrm{~d} \longrightarrow 4 \mathrm{p}
$$

e.g. Calcium (20 electrons) $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2}$

Electrons fill up the orbitals singly before pairing up much like seats on a bus!
The arrangements can also be written in other ways below shows the box method with arrows showing electrons

1s		2s	2p			3s		3 p		4s
Ca	$\uparrow \downarrow$									

Or it can be written shorthand with the symbol of the noble gas which comes before the element to show the full shells e.g Calcium would be [Ar] 4s ${ }^{2}$
Or using the box method Ca: [Ar] 4s $\uparrow \downarrow$
Note the unusual structures of chromium and copper.
The difference in energy between the 3d and 4s electrons is very small, and in chromium the energy required to promote and electron from 4 s to 3 d is recovered in the reduced repulsion which results from the fact that they are no longer paired. Thus the $4 s^{\prime} 3 d^{5}$ structure in Cr is preferred.
In copper, the 3d orbitals are actually lower in energy than the 4 s orbital, so the $4 \mathrm{~s}^{\prime} 3 \mathrm{~d}^{10}$ structure in Cu is preferred. Now try and Complete the following using a mix of the methods:
Chlorine
Iron (NB 3d is written before 4s) Sulphur

Amount of Substance

All substances are made up of particles. In order to make it easy for chemists to work with particles that have different sizes and masses we use the mole.
This is a quantity and is defined by Avogadro's number (6.02×10^{23}) You can pretty much have mole of anything: Penguins, llamas or atoms and molecules. It will always have the same amount in it whatever the size or shape it is.
There is another handy thing about moles as well, the mass of one mole of any substance is its Atomic mass or Formula mass in grams.
So one mole of carbon has a mass of 12 g , as the atomic mass of carbon is 12.

How many moles are there in 44 g of CO_{2} ? How many molecules is this?

How many moles are there in 79 g of $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$?

What is the mass of 2.5 moles of $\mathrm{Na}_{2} \mathrm{O}$?

What is mass of 2.34 moles of Platinum?

How many moles are there in 79 g of $\mathrm{Fe}_{2} \mathrm{O}_{3}$? How many atoms is this?
$($ No of Particles $=$ No. of Moles \times Avogadro's Number $)$

Concentrations of solutions are slightly different, because for a $1 \mathrm{Mol} / \mathrm{dm}^{3}$ solution you need to have 1 mole dissolved in $1 \mathrm{dm}^{3}$ or 1 litre. BUT because don't always make up solutions with one litre or decimetre cubed we need to be able to work out how much stuff to put in to get the concentration or how many moles are in a vol of solution of a certain concentration. (This helps with the mysteries of titration)

Exercise 1 - convert the following volumes into dm^{3} (show your working)
To convert $\mathrm{cm}^{3} \rightarrow \mathrm{dm}^{3}$, divide by $1000 \quad$ to convert $\mathrm{m}^{3} \rightarrow \mathrm{dm}^{3}$, multiply by 1000
a) $250 \mathrm{~cm}^{3}$
b) $125 \mathrm{~cm}^{3}$
c) $1.5 \mathrm{~m}^{3}$
d) $50 \mathrm{~cm}^{3}$
e) $1000 \mathrm{~cm}^{3}$

Exercise 2 - Use the equation to work out the concentration of the following solutions (show your working)

10 g of magnesium chloride in $1 \mathrm{dm}^{3}$ of solution
1.5 g of potassium iodide in $150 \mathrm{~cm}^{3}$ of solution
2.3 g of lithium chloride in $500 \mathrm{~cm}^{3}$ of solution

Exercise 3 - Use the equation to work out the mass required to make the following solutions (show your working)
$0.5 \mathrm{dm}^{3}$ of a $2 \mathrm{~mol} / \mathrm{dm}^{3}$ solution of silver nitrate
$250 \mathrm{~cm}^{3}$ of a $0.15 \mathrm{~mol} / \mathrm{dm}^{3}$ solution of sodium chloride
$10 \mathrm{~cm}^{3}$ of a $0.4 \mathrm{~mol} / \mathrm{dm}^{3}$ solution of sodium carbonate
$500 \mathrm{~cm}^{3}$ of a $5 \mathrm{~mol} / \mathrm{dm}^{3}$ solution of magnesium sulphate

Bonding

Atoms like to stick together depending what atoms you have at the time depends on how they stick together, at the end of the day it's all about the electrons and what they are doing.

There are 3 types of Bonding and 3 types of intermolecular force, lets start with bonding first: you should be able to fill in the facts - remember this was GCSE

IONIC BOND

sodium ion, $\mathrm{Na}^{+}[2,8]^{+}$

chloride ion,
$\mathrm{Cl}^{-}[2,8,8]^{-}$

WATER $\mathrm{H}_{2} \mathrm{O}$

\square

- Abong bend

Shapes of Molecules- Howlucty rev vour?

Molecules and ions come in all sorts of shapes and sizes, they are not all flat and boring, it's the number of electron pairs on the outer shell that decides the shape of the molecule. Electron pairs exist as charge clouds, these are regions where you have a really big chance of finding an electron pair because they are negative they will always repel each other so they want to stay as far away as possible from each other. Lone pairs repel the most so angles between bond pairs are often reduced.

Electron	2	3	4	5	6
Basic shape					
				1	
Example	$\mathrm{Cl}-\mathrm{Be}-\mathrm{Cl}$				
Other example	CO_{2},	$\mathrm{CH}_{3}{ }^{+}$,	AlCl_{4},		PCl_{6}.
Name	linear	trigonal planar	tetrahedral	trigonal bipyramidal	octahedral
Bond angle(s)	180	120	109.5	120/90	90
One Ione pair					
angle			107	87,102	
Name		angular	trigonal pyramidal		square pyramid
Example		CCl_{2},	NH_{3},	SF_{4},	ClF_{5},
Two Ione pairs					
Name of structure			angular	T-shaped	square planar
angle			104.5	88	90
Example	c		$\mathrm{H}_{2} \mathrm{O}$,	ClF_{3},	BrF_{4},

Example:

Predicting the shape of Hydrogen Sulphide:
1.The central atom is sulphur.
2.Sulphur is in group 6, so there are $\mathbf{6}$ electrons in the outer shell
3.There are 2 hydrogen atoms bonded to it, so there are (6+2 (from the hydrogens))

8 electrons in the outer shell
4.The number of electron pairs is $8 / 2=4$ pairs
5. So the sulphur has 4 electron pairs and has made 2 bonds- therefore there are 2
bond pairs and 2 lone pairs - this means $\mathrm{H}_{2} \mathrm{~S}$ will have a bent shape.

Here you go, Predict and draw the shapes of the following molecules include the bond angles (3)
PF_{3}
Perhaps not smooth jazz now , may I suggest techno!! or even thrash metal?
NCl_{3}
BrF_{4}

CLF_{3}

$\mathrm{PCl}_{4}{ }^{+}$

Organic Nomenclature

You have already come across the insanity that is organic chemistry but in a more dilute form as in the alkanes, alkenes and fractional distillation, fortunately for you the gateway to knowledge is about to open in the most
fantastic of ways. Hydrogen and Carbon together can combine to form more compounds than any other elements in the periodic table and somehow we have to name them along with the compounds that have other elements added in as well!!!!

You will concentrate on naming the following groups: Alkanes, Alkenes, Halo-alkanes and Alcohols Before that though some definitions and stuff! You may head to a DARK place soon but don't worry most people

get through qrapmicqachemistry	What it shows	Example (butane)
General	An algebraic formula that describes any member of a series	$\mathrm{C}_{\mathrm{n}} \mathrm{H}_{2 \mathrm{n}+2}$
Empirical	Simplest whole no. ratio of atoms	$\mathrm{C}_{2} \mathrm{H}_{5}$
Molecular	The actual ratio of atoms of each element	$\mathrm{C}_{4} \mathrm{H}_{10}$
Structural	Shows the atoms carbon by carbon	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$
5 Skeletal	Shows the bond of the carbon skeleton only with any functional groups	
Displayed	Shows all atoms and all bonds	

Prefix and suffix for naming

series	Prefix or suffix	example
Alkane	-ane	Propane $\mathrm{C}_{3} \mathrm{H}_{8}$
Branched Alkane	Alkyl-	Methylpropane $\mathrm{CH}_{3} \mathrm{CH}_{(}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{3}$
Alkene	-ene	Propene $\mathrm{C}_{3} \mathrm{H}_{6}$
Halo-alkane	Fluoro-/Chloro-/ Bromo- /lodo-	Chloropropane $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Cl}$
Alcohol	-ol	Propanol $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$

Overall method of nomenclature

Identify the longest carbon chain- careful it might be bent (see table on next page, where the example is)
Main functional group - These usually form the suffix of the molecule - For example an - OH group will mean the molecule will end in -ol. A C=C group will mean the molecule name will end in -ene.

Number the chain - Make the carbon with the main functional group the lowest number. For example alkenes and alcohol groups are classed as main functional groups. A branch isn't considered as influential in nomenclature as, say -OH is.
Before the suffix - write the number the functional group is on. For example, if an - $\mathbf{O H}$ is on the third carbon, the molecule would end $\sim-3-\mathrm{ol}$. What if you have two or more -OH groups? Just add carbon number and then di, tri or tetra to the molecule name. For example ~hexa-2, 3, 4-triol, or \sim penta-2,4-diol.
Side chains - They are less important than functional groups as mentioned - but number them and then put them into alphabetical order. i.e. Ethyl comes before methyl; regardless of whether it is on the $2^{\text {nd }}, 3^{\mathrm{rd}}, 4^{\mathrm{n}}$, etc carbon. E.g. You could have - 7-ethyl-3-methyl....... And not 3-methyl-7-ethyl........

Identical chains - If there is more than one identical chain then you write - di, tri, tetra before that part of the name. HOWEVER \rightarrow Ignore this prefix when doing step number 5, because otherwise you'll begin to get a migraine trying to name these organic molecules.

Examaple: Lets name the following organic compound

Holy covalent bonding batman!
It's not the best photo but you can still see it OK, so let's follow the system!
You can see the longest chain is numbered in red
There are five carbons in this chain

No. of carbon	prefix
1	Meth-
2	Eth-
3	Prop-
4	But-
5	Pent-
6	Hex-

So the prefix is
pent-

The functional group is an OH which makes
 this an alcohol with the suffix -OL

So, so far we have PENTANOL. But the OH is on the second carbon in (always keep your numbers as low as possible and number from the functional group). We therefore have PENTAN-2-OL.

Right, now for the side chains: there are 2 methyl groups and 1 ethyl group,

The methyl groups are on carbons 2 and 4 while the ethyl is on carbon 3

Alphabetically e comes before m, so the ethyl comes first-

So now we have 3 ethyl 2,4 dimethyl

Finally let us assemble the two parts together3 ethyl 2, 4 dimethyl PENTAN-2-OL

Di is two, tri is three, tetra is four ,Penta is five, Hexa is six
$\underset{\mathrm{CH}_{3}}{\mathrm{CH}_{3}} \mathbf{}$ ($\mathrm{CH}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}=\mathrm{CH}_{2}$

CH_{3}

$\mathrm{CH}_{3} \mathrm{CHFCHFCH}_{2} \mathrm{CH}_{3}$

Isomerism

Isomers have the same molecular formula but the atoms are in a different arrangement in space, we are going to look at Structural Isomers

Structural isomers have different structural arrangements of atoms, it's a bit like messing around with lego blocks - you can have the same number of blocks but you can put them together in loads of different ways

There 3 types of structural isomer

Positional isomers- have the same skeleton and same groups or atoms attached but the atom or group is attached to a different carbon
© scienceaid.co.uk

the chlorine is attached to a different carbon we can
show this by changing the number
Functional group-have the same atoms arranged in different functional groups
Alkene and Cycloalkane

Hex-3-ene
Cyclohexane
Notice the double bond has gone both still have the formula $\mathbf{C}_{6} \mathbf{H}_{12}$

Draw out the positional isomers and chain isomers of $\mathbf{C}_{5} \mathbf{H}_{11} \mathbf{C l}$

Draw out the functional group isomer of $\mathbf{C}_{4} \mathbf{H}_{8}$ and $\mathbf{C}_{5} \mathbf{H}_{10}$

This is just boring, nothing fun at all here, just move on
The Periodic Table is made up by placing the elements in the order of their ATOMIC NUMBER, this leads to them arranging themselves into

> ROWS (PERIODS) and

COLUMNS (GROUPS)
The periodic table is further split into blocks; in each different block the elements are filling, or have just filled, particular orbitals

Because the outer shell arrangement of electrons repeats itself through the table we notice that there are patterns which emerge across the table -this is periodicity.

We will look at 3 of these trends:

Trends in atomic radius of Period 3 elements

First ionisation energies of Period 3 elements

Atomic Radius

As you move across period 3 the radius decreases this is because of the increasing charge in the nucleus of the atom but the same number of shells of electrons

First lonisation Energy

"The energy required to remove ONE MOLE of electrons (to infinity) from ONE MOLE of gaseous atoms to form ONE MOLE of gaseous positive ions." This INCREASES across a period as the Nuclear charge increases by one each time.
Each extra electron, however, is going into the same main energy level so is subject to similar shielding and is a similar distance away from the nucleus.
Electrons are held more strongly and are harder to remove.

Melting and Boiling point

General increase then decrease as the metals lose more outer electrons the bonds become stronger .
Si is fully covalently bonded and so has a high melting and boiling point P to Cl - these are simple covalent molecules with weak van der waals forces which are dependent on the size of the molecule Ar is mono atomic

The oxides of the elements of period 3 also show certain trends

Element	Formula of oxide	Structure	Reaction of oxide with water	Acid/base nature
Sodium*	$\mathrm{Na}_{2} \mathrm{O}$	Giant Ionic	$\mathrm{Na}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{NaOH}$	Strongly basic
Magnesium*	MgO	Giant Ionic	Slight: $\mathrm{MgO}+\mathrm{H}_{2} \mathrm{O} \rightarrow$ $\mathrm{Mg}(\mathrm{OH})_{2}$	Weakly basic
Aluminium	$\mathrm{Al}_{2} \mathrm{O}_{3}$	Giant Ionic		Amphoteric
Silicon	SiO_{2}	Giant Covalent (Metalloid)		Very weakly
Phosphorous*	$\mathrm{P}_{4} \mathrm{O}_{10}$	Molecular Covalent	$\mathrm{P}_{4} \mathrm{O}_{10}+6 \mathrm{H}_{2} \mathrm{O} \rightarrow 4 \mathrm{H}_{3} \mathrm{PO}_{4}$	Strongly acidic
Sulphur*	SO_{2}			
SO_{3}	Molecular Covalent	$\mathrm{SO}_{3}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{2} \mathrm{SO}_{4}$	Strongly acidic	
Chlorine	no direct reaction but: $\mathrm{Cl}_{2} \mathrm{O}_{7}$	Molecular Covalent		$\mathrm{Cl}_{2} \mathrm{O}_{7}+\mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{HClO}_{4}$

Create a mind map on periodicity and the trends in p3 (if you have any mind left)

this is not a mind map by the way, it just
looks cool.

The Endmu(for now)

